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Abstract—Originally invented by R. G. Gallager in 1962, low-

density parity-check (LDPC) codes have reemerged as  
competition to the celebrated, Shannon-limit-approaching, Turbo 
codes.  The sum-product (SP) decoding algorithm (a version of 
which was proposed by Gallager) is a key technique for decoding 
LDPCs.  The SP algorithm operates on the factor graph 
representation of the parity check matrix of an error correcting 
code, allowing approximate conditional probabilities of the 
codeword bits to be calculated iteratively.  Although the decoding 
accuracy of the SP algorithm is slightly poorer than the optimum 
maximum likelihood (ML) decoder, its computational complexity 
(which grows linearly with code length) for large codes is much 
lower than that for ML (which grows exponentially with code 
length).  It has been postulated that different factor graph 
representations of the same parity check code result in different 
algorithm performance.  This report shows, via computer 
simulation on short codes, that this is indeed true, offers some 
explanation, and reviews a few researchers’ work on factor 
graph analysis.   
 

Index Terms—Sum-product decoding, iterative probability 
propagation, message passing, belief propagation, low density 
parity check (LDPC) codes, Gallager codes, error correction, 
factor graph, Tanner graph, pseudocode.  
 

I. INTRODUCTION 
HE development of good error correcting codes with 
reasonable coding and decoding complexity has been the 

aim of the coding community for about 50 years.  The use of 
codes  with structure that allows decoding ease has almost 
always meant a sacrifice in error control performance.  And 
conversely, codes achieving good error correction properties 
have usually been too difficult to decode optimally.   

Shannon showed in [1] that if the information transmission 
rate of a communication system remains below the capacity of 
a noisy channel, arbitrarily low bit error rates can be achieved 
using infinitely long codewords.  Unfortunately, it is infinitely 
difficult (impossible) to decode an infinitely long codeword. 
The optimum decoder uses the maximum likelihood (ML) 
decoding rule, which compares the received symbol y = [ y0 y1 
… yn ] = x + n = [ x0 x1 … xn ] + n, where x is the transmitted 
codeword and n is an additive white Gaussian noise vector, 
with all legitimate codewords in the codebook and selects the 
most likely transmitted codeword.  Even with finite codeword 
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lengths, the ML decoder approaches impossibility as the 
codeword length increases.   

In 1962, Gallager [2],[3] proposed low-density parity-check 
codes (LDPCs)  and an iterative decoding technique for 
decoding them.  Nearly forty years later, other researchers [4], 
[5], [10] rediscovered this class of codes and algorithm as  
having the promise to achieve the seemingly opposing aims of 
good error control and decoding ease.   Long LDPCs [4],[6] 
have performed close to the Shannon limit.  The key 
technique to decoding long length LDPC codewords is the 
sum-product (SP) algorithm operating on the factor graph 
(also known as Tanner graph) representation of the parity 
check matrix of a code.   

Although the primary suitability for the SP algorithm is for 
long codes (short codes can generally be decoded using ML), 
this report looks at short codes because it is much easier to 
analyze the inner workings of the algorithm on a short code.  
Results can be carefully extended to longer codes.   

II. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM 

A. Parity Check Matrix 
A parity check code, C , can be described using a parity 

check matrix H.  Fig. 1a) shows the systematic parity check 
matrix for an extended Hamming (8,4) code.  Each row of the 
matrix describes a parity check equation.  Creating a new 
parity check matrix, H’, from linear combinations of rows of 
H (parity check equations) creates parity check equations on 
the same code as long as all rows of H’ are linearly 
independent.  Figs. 1b), 1c) and 1d) show three parity check 
matrices equivalent to the systematic matrix A.  

B. Factor Graph 
A factor graph or Tanner graph [5]-[11] is a bipartite graph 

representing the relationships between the codeword bits 
(referred to as variable nodes) and the parity checks (check 
nodes).  Edges between variable nodes and check nodes 
indicate the participation of variable (bit) i in parity check j.  
A factor graph is created by drawing an edge between each 
variable node i and check node j wherever matrix element hji = 
1.  Fig. 2 shows the factor graph for the systematic parity 
check matrix in Fig.1a). 
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Fig. 1.  Four equivalent parity check matrices for the extended Hamming (8,4) 
code a) matrix A (systematic form), b) matrix 1, c) matrix 2, d) matrix 5. 

 
A given code has multiple equivalent parity check matrices 

and therefore multiple equivalent factor graphs.  The question 
investigated by this report is: how does the performance of the 
SP algorithm differ with different factor graphs and why? 
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Fig. 2.  Factor graph representation of Hamming (8,4) systematic parity check 
matrix. 
 

C. The SP Algorithm 
The SP algorithm1 is described thoroughly by numerous 

authors [5],[7]-[12], and will be only briefly described here.  
Essentially, SP calculates approximations to log-likelihood 
ratios (LLRs): lr = log[ p( xr = 1 | y) / p( xr = -1 | y) ], r œ { 1, 
2, …, n} for each variable node in order to make decision on 
each codeword bit, xr.  LLRs are calculated by iteratively 
passing extrinsic LLRs as messages between variable nodes 
and check nodes.  Variable node i sends message miØj to check 
node j, representing the ith node’s belief about the 
corresponding bit being 1 or –1.  In turn check node j sends a 
message bjØi representing its belief under the  jth parity check 
constraint imposed by the code.  Extrinsic LLRs sent to a node 
contains information gathered from nodes other than the 
destination node.  For example, check node 3 receives 
messages from variable nodes 1, 3, 4 and 7.  The message sent 

 
1 Other terms used for the SP algorithm and variants are: message passing, 

belief propagation, and iterative probablility propagation.  

by check node 3 back to variable node 1, b3Ø1, is combination 
of messages from received from variable nodes 3, 4 and 7.   

Specifically, the extrinsic messages are calculated as 
follows 
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where ijC \  is the set of variable nodes connected to check 

node j except variable node i, and jiV \  is the set of check 

nodes connected to variable node i except check node j.  The 
total LLR for node r is: 
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Messages are passed back and forth until some stopping 
criterion is met.  This criterion can be a) a preset maximum 
number of iterations has occurred, b) the lr values have 
converged to some preset accuracy e, or c) after thresholding 
the lr values, the parity check equations are all satisfied.  A 
combination of these can also be used.   

D. Tree Representation of Factor Graph and the  
Pseudocode 
The factor graph described earlier is a graph containing 

cycles – that is, one can traverse many of the edges between 
variable and check nodes cyclically, using an infinite number 
of possible schedules.  Normally, the algorithm calculates 
messages from each variable node in order, and then messages 
from each check node in order. As discussed in numerous 
references (for example [10]), conditional bit probabilities 
calculated by the SP algorithm are exact only for graphs with 
no cycles.  For short codes cycles occur very early, perhaps 
only after one iteration.  For the more useful long LDPC 
codes, cycles occur much later on due to the low density of 
edges in the factor graph.  However, deviation from optimal 
decoding does occur even for long LDPC codes as the number 
of iterations increases.   

To visualize how the SP algorithm is executed in a 
computer program, the factor graph can be redrawn in such a 
cycle-free tree structure.  This tree, on which the SP algorithm 
operates, is a different code, C  (termed by some authors as a 
pseudocode and by Wiberg [10] as a subgraph code), which is 
not exactly isomorphic to the original code C .  SP performs 

optimal ML decoding on C  not on C .  Despite this 
approximation, it turns out that SP performs very well.   

The degradation in performance of the SP algorithm on 
graphs with short cycles has not been well analyzed.  
However, as described in the section IV, a few researchers 
have done some work.  

Fig. 3 shows the tree representation of the factor graph in 
Fig. 2, after two iterations using variable node 1 as a root 
node.  Obviously, this tree becomes very complicated very 
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quickly.  Nevertheless, one can see that each variable or check 
node appears in the tree code with differing multiplicity at 
each iteration step.  

 

 
Fig. 3.  Tree representation of the factor graph of Fig 2 after two iterations, 
using variable node 1 as the root node. 

 
Since the local calculations at each multiple node are 

performed independently, LLRs for different instances of the 
same bit/check may diverge.  Multiple instances of these 
nodes can be thought of as expansion, iteration step by 
iteration step, of the original (n, k) code with p = n - k parity 
checks to a larger (npseudo, kpseudo) code with ppseudo  = npseudo - 
kpseudo parity checks.   As will be shown in Section V, 
pseudocode multiplicities increase quickly with the number of 
iterations, and do not progress equally with each iteration step.   

III. SIMULATION RESULTS 
A simulator for the SP algorithm was built in C++, and bit 

error rate (BER) performance was obtained using a large 
number of matrices for (8,4) and (16,11) extended Hamming 
codes.   

As mentioned earlier there are three possible iteration-
stopping criteria.  It was found that the parity check criterion 
reliably performed better that the LLR convergence check or 
fixed iteration approaches.  The parity check criterion also 
resulted in more successful decodes in fewer iterations.  Fig. 4 
shows BER performance, and Fig. 5 shows typical histograms 
for parity check, LLR convergence check, and parity or LLR 
convergence check settings.  In all cases the decoding 
algorithm was stopped after 20 iterations and bit decisions 
made, even if the parity or convergence checks were not 
satisfied.  These decodes were tagged as “unsuccessful 
decodes” and errors were tabulated separately. 

 
Fig. 4.  Algorithm performance with different stopping criteria: parity check 
only, LLR convergence check, parity or LLR convergence check– Hamming 
(8,4). 

 
Fig. 5.  Algorithm iteration histograms – Hamming (8,4). 

 
Although there exist a large number of possible parity check 

matrices for each code, many have equivalent properties and 
thus similar performance.  It was useful to categorize them 
according to column and row weight distributions.  The 
weight of a column or row is the number of non-zero elements 
in that column or row.   The weight of column i indicates the 
number of parity check equations in which the variable node i 
(i.e. bit position i) participates.  The weight of row j indicates 
the number of variable nodes (bits) that the check node j 
checks.   Weight vectors vnw and cnw describe the variable 
node and check node weight distributions (number of 
rows/columns with a given weight) of each parity check 
matrix.  For the (8,4) code, variable node weights range from 
1 to 4, and check node weights are either 4 or 8.  For the 
(16,11) code, variable node weights range from 1 to 5, and 
check node weights are either 8 or 16. 

A. (8,4) Hamming Code 
There are four different weight distributions of parity check 

matrices for this code.  All matrix examples for each weight 
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distribution exhibited identical BER performance for the 
signal to noise ratios tested (Eb/N0 from 0 to 8 dB).   Fig. 6 
shows the BER curves for the sample matrices with each of 
these weight distributions.  At low Eb/N0, all matrices have 
similar performance, but the performance curves begin to 
separate at higher Eb/N0.    

Table I shows the weight distributions of the sample parity 
check matrices and their BER performance at Eb/N0 = 8 dB.  
Total BER counts all bit errors regardless of them being a 
result of successful decodes (those for which the parity check 
equations were satisfied) or unsuccessful decodes (those for 
which the algorithm hit the iteration limit of 20).  Successful 
BER excludes the unsuccessful decodes from the count.  The 
reason for this separation was to see if the unsuccessful 
decodes accounted entirely for the shift in performance from 
optimal decoding (which it didn’t).   

Note the significant degradation in the performance of 
matrices 2 and 5 compared to matrices A and 1.  Note also 
that matrices 2 and 5 each have a column of weight 4.   
 

 
Fig. 6.  BER performance of four different parity check matrices – Hamming 
(8,4). 

 

B. (16,11) Hamming Code 
The (16,11) systematic matrix and numerous equivalent 

matrices were tested for performance.  There are a large 

number of variations of matrices possible, so only a subset 
with representative characteristics are presented here.  BER 
curves for sample matrices are shown in Fig. 7 and their 
weight distributions are shown in Table II.  Note that matrix 
276, with a lower weight spread, has the best performance, 
and is the only matrix without a weight 5 column.   

 

 
Fig. 7.  BER performance of several equivalent parity check matrices – 
Hamming (16,11).  (Note: the union bound is loose at low Eb/N0.) 
 

IV. RESEARCH ON THE PERFORMANCE OF ITERATIVE 
ALGORITHMS ON FACTOR GRAPHS 

Performance of the SP algorithm on factor graphs with 
short cycles is not yet very well researched.  A few 
researchers, such as Wiberg [10], Frey, Koetter, and Vardy 
[14],[15] and Koetter and Vontobel [16], are beginning to 
develop analysis techniques.  This work focuses on analysis of 
the pseudocode, C , generated by the computation tree – the 
cycle-free tree representation of the original code, C . 

Wiberg [10] looked at weights of deviations Ee ∈  
(analogous to detours on a trellis) in the pseudocode (his 
terminology was subgraph code).  He obtains a bound on error 
probability as a function of these weights: 

TABLE I 
PARITY MATRIX WEIGHT DISTRIBUTIONS FOR  (8,4) HAMMING CODE 

Matrix 
Example 

Variable Node 
Weight 

Distribution 
 vnw 

Check Node 
Weight 

Distribution 
 cnw 

Total BER Successful 
BER 

A { 4 0 4 0 } { 4 0 } 8.33x10-6 2.81x10-6 
1 { 2 4 2 0 } { 4 0 } 7.78x10-6 2.99x10-6 
2 { 3 3 1 1 } { 4 0 } 7.31x10-5 3.87x10-5 
5 { 1 3 3 1 } { 3 1 } 5.83x10-5 1.74x10-5 

BERs are for Eb/N0 =8 dB 
Matrix A is the systematic form 
vnw = { vnw1 vnw2 vnw3 vnw4 } means there are vnw1 weight 1 columns, 

vnw2 weight 2 columns, vnw3 weight 3 columns, vnw4 weight 4 
columns 

cnw = { cnw4 cnw8 } means there are cnw4 weight 4 rows, cnw8 weight 8 
rows 

 

TABLE II 
PARITY MATRIX WEIGHT DISTRIBUTIONS FOR (16,11) HAMMING CODE 

Matrix 
Example 

Variable Node 
Weight 

Distribution 
 vnw 

Check Node 
Weight 

Distribution 
 cnw 

Total BER Successful 
BER 

A { 5 0 10 0 1 } { 5 0 } 9.24x10-6 7.15x10-6 
275 { 5 0 10 0 1 } { 5 0 } 1.13x10-5 9.04x10-6 
276 { 2 6 6 2 0 } { 5 0 } 4.94x10-6 1.31x10-6 
336 { 3 6 4 2 1 } { 5 0 } 1.13x10-5 6.73x10-5 

BERs are for Eb/N0 =8 dB 
Matrix A is the systematic form 
vnw = { vnw1 vnw2 vnw3 vnw4 vnw5 } means there are vnw1 weight 1 

columns, vnw2 weight 2 columns, vnw3 weight 3 columns, vnw4 weight 
4 columns, vnw5 weight 5 columns 

cnw = { cnw8 cnw16 } means there are cnw4 weight 8 rows, cnw8 weight 16 
rows 
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where ( )eω  is the weight of deviation e , and E  is the set of 
deviations.  In order to calculate this it is necessary to obtain 
the weight enumeration function for the deviations, which 
becomes more difficult with the number of iterations.  He 
observes that ( )eω is small when some nodes occur more 
frequently that others, which in turn increases the error 
probability bound.   

In order to develop some idea of weights in a factor graph, 
Koetter and Vontobel [16] analyze the behavior of iterative 
algorithms using finite graph covers.   A degree m graph 
cover contains m replications of the original factor graph with 
edges drawn maintaining the node adjacencies of the factor 
graph.  In this representation they are able to show that there 
exist pseudocodewords with pseudoweights less than the 
minimum codeword weight of the original code.  Since the 
error performance of any code is directly related to distances 
between codewords, this lower weight, which arises from the 
iterative decoding process, causes the pseudocode to perform 
slightly poorer than the original code.   

Frey, Koetter, and Vardy [15] present a recursion formula 
for calculating node multiplicities (the number of times copies 
of a variable or check node occurs in the tree code) in the 
computation tree.  For the ith node, the length n+p multiplicity 
column vector m(l) at half-iteration l, is given by: 

( ) ( ) ( ) ( )21 −− −−= lll mIDAmm  
Where A is the (n+p)x(n+p) node adjacency matrix, D is a 

(n+p)x(n+p) diagonal matrix containing the original code 
node degrees, I is the (n+p)x(n+p) identity matrix, m(0) 
contains a 1 in the ith position and 0s elsewhere, and m(1) = 
Am(0)+m(0).  An example of this computation is shown in the 
next section.   

Using multiplicities, these authors describe the appearance 
of pseudosignals – pseudowords that correspond to codewords 
in C , and spurious pseudocodewords – pseudowords that 

satisfy the parity checks in C  but do not have a 
corresponding codeword.  They show that pseudosignals may 
have positive or negative correlation with codewords.  
Negatively correlated pseudosignals give rise to decoding 
errors. 

Also described in [15] is skewness – unequal scaling of 
signal dimensions.  This results in a tilting of the decoding 
boundaries in pseudocode space.  A simplfied illustration of 
this is given in the next section.  

V. ANALYSIS OF SIMULATION RESULTS 

A. Tree Code Expansion for (3,0) Trivial Code 
In [16], Koetter and Vontobel use a trivial zero-rate code as 

an illustrative example of their analysis.  Since the tree codes 
for the (8,4) and (16,11) codes are far too complicated to 
draw, it was decided to use their example in order to visualize 

the appearance of pseudocodewords.  Although the (3,0) is 
clearly a useless code (a codeword is made up entirely of 
parity bits and no information bits), it is useful to illustrate the 
appearance of pseudocodewords because there exists only one 
valid codeword, [ 0 0 0 ].   

Fig. 8 shows two equivalent matrices for this code, and Fig. 
9 shows their tree codes after one full iteration.  
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Fig. 8.  Two equivalent (3,0) parity matrices and their factor graphs. 
 

 
Fig. 9a).  Tree code for the (3,0) matrix A. 

 

Fig. 9b).  Tree code for the (3,0) matrix B. 
 
Observe that the first matrix has many short cycles, while 
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the second has lost some cycles.  Thus the node multiplicities 
and growth of the pseudocode are lower in the second matrix.   

Each matrix has a number of tree pseudocodewords that 
satisfy local parity checks, so with the addition of noise via 
the transmission channel, LLR messages from multiple checks 
may converge to an erroneous value.  Each variable node 
collapses the multiple LLRs by summation, and then a 
decision is made on the variable’s bit value.  For example, for 
node 2 of the first matrix, the LLR value for the decision will 
be 

2322212 →→→ ++= βββλ  

A bit error is made if the individual LLR messages 2→jβ , 

which may be converging independently in response to local 
checks, cause the total LLR 2λ , to sum to the wrong value.   
 

B. Analysis of (8,4) Pseudocode 
The ideas of node multiplicity and skewness from [15] were 

used to analyze the (8,4) code and explain the performance 
characteristics of the four representative matrices.   

The recursive equations given above were used in this 
analysis.  Using matrix A as an example, with variable node 1 
as the root node, we have m(0) = [ 1 0 0 0 0 0 0 0 0 0 0 0 0 ]T, 
D = diag( 3 3 3 3 1 1 1 1 4 4 4 4 ), and A is: 
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Table III shows the total variable node multiplicity numbers 

(the variable node portion of multiplicity vector m(l)) for the 
four tested matrices.  Two things are notable from this table.  
First, replication of original codeword bits does not progress 
evenly in the pseudocode, and this progression differs for each 
matrix.  Thus it is expected that different matrices process 
beliefs concerning each bit (as LLRs) differently.  For 
accurate decoding, there should remain positive correlation 
between pseudocodewords and the original codewords. 
Second, the number of bits in the pseudocode increase 
exponentially, meaning that the number of pseudocodewords 
increase more than exponentially.   

Fig. 10 was created using the multiplicity vectors, summing 
up the appropriate elements to obtain npseudo, ppseudo and then 
kpseudo = npseudo - ppseudo.   It shows how fast the pseudocode 
grows with each iteration step.  The number of 
pseudocodewords is 2kpseudo.  

 

 
Fig. 10.  Expansion of pseudocode size with number of full iterations for the 
tested matrices – Hamming (8,4). 

 
Fig. 11 was calculated as illustrated by the following 

example.  For matrix A, using node 1 as the root, the variable 
node portion of multiplicity vector m(4) (after 2 iterations) is [ 
7 4 4 6 3 6 4 6 ].  Thus codeword 1C  = [ 1 1 1 1 1 1 1 1 ] 

becomes pseudosignal 1C = [ 7 4 4 6 3 6 4 6 ].  The angle 
between these vectors is 

TABLE III 
VARIABLE NODE MULTIPLICITIES FOR (8,4) HAMMING CODE 

V1 V2 V3 V4 V5 V6 V7 V8 

Matrix A       
10 10 10 10 4 4 4 4 
46 46 46 46 22 22 22 22 
190 190 190 190 94 94 94 94 
766 766 766 766 382 382 382 382 
Matrix 1       
10 7 7 7 4 10 4 7 
40 31 31 31 16 40 16 40 
142 115 115 115 70 142 70 115 
520 403 403 403 232 520 232 403 
Matrix 2       
7 7 7 4 13 4 4 10 
37 37 37 22 49 22 22 46 
145 145 145 88 211 88 88 172 
571 571 571 352 787 352 352 712 
Matrix 5       
14 14 8 17 14 11 11 11 
104 104 44 125 104 77 77 77 
752 752 404 863 752 605 605 605 
5282 5282 2510 6335 5282 4043 4043 4043 
        

 
Each row in the table corresponds to an iteration step: row 1 is after the first 

iteration, row 2 after the second iteration, etc.  Four iterations are shown for 
each matrix.  
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Fig. 11.  Angle in 8 dimensional space between codeword [ 1 1 1 1 1 1 1 1 ] 
and its corresponding pseudocodeword – Hamming (8,4). 

 
From these two figures, one can make some conjecture to 

explain the performance of the different matrices.  Recall that 
matrices A (systematic) and 1 had similar performance, and 
matrices 2 and 5 were similarly poorer than A and 1.  From 
Fig. 10 we see that matrices A, 1, and 2 have similar 
pseudocode growth, all slower than matrix 5.  From Fig. 11 it 
is apparent that matrix 2 has the worst skew after only one 
iteration, while matrices A and 1 have identical skew.  The 
poor performance of matrix 2 can be explained by the slippage 
of pseudocodewords to the wrong side of the decision 
boundaries by this great skew, causing negative correlation 
between pseudocodewords and codewords.  Although matrix 
5 has lower skew angle, its massive growth in number of 
pseudocodewords may mean that even small skew can cause 
more pseudocodewords to correlate to the wrong codewords.   

VI. CONCLUSION 
The primary conclusion from this project is that the choice 

of parity matrix does have an effect on the performance of the 
SP iterative decoding algorithm.  The existence of short cycles 
in the factor graph degrades performance.  In general, it 
appears that the existence of weight 1 columns, which 
effectively terminates cycles, is beneficial. Also, a low spread 
of column weights, resulting in an even progression of node 
multiplicity, improves performance.  More research is still 
required to fully quantify the analysis of short cycles on factor 
graphs and determine more solid criteria for factor graph 
selection for best performance.   There is a research 
opportunity to quantify the pseudoweight distributions of 
different parity matrices in order to find a bound on error 
performance.   
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