

1

Abstract—Originally invented by R. G. Gallager in 1962, low-

density parity-check (LDPC) codes have reemerged as
competition to the celebrated, Shannon-limit-approaching, Turbo
codes. The sum-product (SP) decoding algorithm (a version of
which was proposed by Gallager) is a key technique for decoding
LDPCs. The SP algorithm operates on the factor graph
representation of the parity check matrix of an error correcting
code, allowing approximate conditional probabilities of the
codeword bits to be calculated iteratively. Although the decoding
accuracy of the SP algorithm is slightly poorer than the optimum
maximum likelihood (ML) decoder, its computational complexity
(which grows linearly with code length) for large codes is much
lower than that for ML (which grows exponentially with code
length). It has been postulated that different factor graph
representations of the same parity check code result in different
algorithm performance. This report shows, via computer
simulation on short codes, that this is indeed true, offers some
explanation, and reviews a few researchers’ work on factor
graph analysis.

Index Terms—Sum-product decoding, iterative probability
propagation, message passing, belief propagation, low density
parity check (LDPC) codes, Gallager codes, error correction,
factor graph, Tanner graph, pseudocode.

I. INTRODUCTION
HE development of good error correcting codes with
reasonable coding and decoding complexity has been the

aim of the coding community for about 50 years. The use of
codes with structure that allows decoding ease has almost
always meant a sacrifice in error control performance. And
conversely, codes achieving good error correction properties
have usually been too difficult to decode optimally.

Shannon showed in [1] that if the information transmission
rate of a communication system remains below the capacity of
a noisy channel, arbitrarily low bit error rates can be achieved
using infinitely long codewords. Unfortunately, it is infinitely
difficult (impossible) to decode an infinitely long codeword.
The optimum decoder uses the maximum likelihood (ML)
decoding rule, which compares the received symbol y = [y0 y1
… yn] = x + n = [x0 x1 … xn] + n, where x is the transmitted
codeword and n is an additive white Gaussian noise vector,
with all legitimate codewords in the codebook and selects the
most likely transmitted codeword. Even with finite codeword

Submitted as part of the requirement for course ECE682 Error Control

Coding, University of Alberta, April 15, 2004.

lengths, the ML decoder approaches impossibility as the
codeword length increases.

In 1962, Gallager [2],[3] proposed low-density parity-check
codes (LDPCs) and an iterative decoding technique for
decoding them. Nearly forty years later, other researchers [4],
[5], [10] rediscovered this class of codes and algorithm as
having the promise to achieve the seemingly opposing aims of
good error control and decoding ease. Long LDPCs [4],[6]
have performed close to the Shannon limit. The key
technique to decoding long length LDPC codewords is the
sum-product (SP) algorithm operating on the factor graph
(also known as Tanner graph) representation of the parity
check matrix of a code.

Although the primary suitability for the SP algorithm is for
long codes (short codes can generally be decoded using ML),
this report looks at short codes because it is much easier to
analyze the inner workings of the algorithm on a short code.
Results can be carefully extended to longer codes.

II. FACTOR GRAPHS AND THE SUM PRODUCT ALGORITHM

A. Parity Check Matrix
A parity check code, C , can be described using a parity

check matrix H. Fig. 1a) shows the systematic parity check
matrix for an extended Hamming (8,4) code. Each row of the
matrix describes a parity check equation. Creating a new
parity check matrix, H’, from linear combinations of rows of
H (parity check equations) creates parity check equations on
the same code as long as all rows of H’ are linearly
independent. Figs. 1b), 1c) and 1d) show three parity check
matrices equivalent to the systematic matrix A.

B. Factor Graph
A factor graph or Tanner graph [5]-[11] is a bipartite graph

representing the relationships between the codeword bits
(referred to as variable nodes) and the parity checks (check
nodes). Edges between variable nodes and check nodes
indicate the participation of variable (bit) i in parity check j.
A factor graph is created by drawing an edge between each
variable node i and check node j wherever matrix element hji =
1. Fig. 2 shows the factor graph for the systematic parity
check matrix in Fig.1a).

Performance of the Sum-Product Decoding
Algorithm on Factor Graphs With Short Cycles

Kevin Jacobson

T

2

)
01110001
10110010
11010100
11101000

a



















)
11101000
00010111
11010100
10100101

b



















)
00101011
10011001
01001101
11101000

c



















)
11111111
11010100
10011001
01011010

d



















Fig. 1. Four equivalent parity check matrices for the extended Hamming (8,4)
code a) matrix A (systematic form), b) matrix 1, c) matrix 2, d) matrix 5.

A given code has multiple equivalent parity check matrices

and therefore multiple equivalent factor graphs. The question
investigated by this report is: how does the performance of the
SP algorithm differ with different factor graphs and why?

1 2 3 4 5 6 7 8

1 2 3 4

b1Ø2
m8Ø4

Variable
Nodes

Check
Nodes i j

Fig. 2. Factor graph representation of Hamming (8,4) systematic parity check
matrix.

C. The SP Algorithm
The SP algorithm1 is described thoroughly by numerous

authors [5],[7]-[12], and will be only briefly described here.
Essentially, SP calculates approximations to log-likelihood
ratios (LLRs): lr = log[p(xr = 1 | y) / p(xr = -1 | y)], r œ { 1,
2, …, n} for each variable node in order to make decision on
each codeword bit, xr. LLRs are calculated by iteratively
passing extrinsic LLRs as messages between variable nodes
and check nodes. Variable node i sends message miØj to check
node j, representing the ith node’s belief about the
corresponding bit being 1 or –1. In turn check node j sends a
message bjØi representing its belief under the jth parity check
constraint imposed by the code. Extrinsic LLRs sent to a node
contains information gathered from nodes other than the
destination node. For example, check node 3 receives
messages from variable nodes 1, 3, 4 and 7. The message sent

1 Other terms used for the SP algorithm and variants are: message passing,

belief propagation, and iterative probablility propagation.

by check node 3 back to variable node 1, b3Ø1, is combination
of messages from received from variable nodes 3, 4 and 7.

Specifically, the extrinsic messages are calculated as
follows





















= ∏

∈

→−
→

ijCl

jl
ij

\
2

tanhtanh2 1 µ
β

∑
∈

→→ =
jiVl

ilji
\

βµ

where ijC \ is the set of variable nodes connected to check

node j except variable node i, and jiV \ is the set of check

nodes connected to variable node i except check node j. The
total LLR for node r is:

[]nr
rVl

rlr ,1, ∈= ∑
∈

→βλ

Messages are passed back and forth until some stopping
criterion is met. This criterion can be a) a preset maximum
number of iterations has occurred, b) the lr values have
converged to some preset accuracy e, or c) after thresholding
the lr values, the parity check equations are all satisfied. A
combination of these can also be used.

D. Tree Representation of Factor Graph and the
Pseudocode
The factor graph described earlier is a graph containing

cycles – that is, one can traverse many of the edges between
variable and check nodes cyclically, using an infinite number
of possible schedules. Normally, the algorithm calculates
messages from each variable node in order, and then messages
from each check node in order. As discussed in numerous
references (for example [10]), conditional bit probabilities
calculated by the SP algorithm are exact only for graphs with
no cycles. For short codes cycles occur very early, perhaps
only after one iteration. For the more useful long LDPC
codes, cycles occur much later on due to the low density of
edges in the factor graph. However, deviation from optimal
decoding does occur even for long LDPC codes as the number
of iterations increases.

To visualize how the SP algorithm is executed in a
computer program, the factor graph can be redrawn in such a
cycle-free tree structure. This tree, on which the SP algorithm
operates, is a different code, C (termed by some authors as a
pseudocode and by Wiberg [10] as a subgraph code), which is
not exactly isomorphic to the original code C . SP performs

optimal ML decoding on C not on C . Despite this
approximation, it turns out that SP performs very well.

The degradation in performance of the SP algorithm on
graphs with short cycles has not been well analyzed.
However, as described in the section IV, a few researchers
have done some work.

Fig. 3 shows the tree representation of the factor graph in
Fig. 2, after two iterations using variable node 1 as a root
node. Obviously, this tree becomes very complicated very

3

quickly. Nevertheless, one can see that each variable or check
node appears in the tree code with differing multiplicity at
each iteration step.

Fig. 3. Tree representation of the factor graph of Fig 2 after two iterations,
using variable node 1 as the root node.

Since the local calculations at each multiple node are

performed independently, LLRs for different instances of the
same bit/check may diverge. Multiple instances of these
nodes can be thought of as expansion, iteration step by
iteration step, of the original (n, k) code with p = n - k parity
checks to a larger (npseudo, kpseudo) code with ppseudo = npseudo -
kpseudo parity checks. As will be shown in Section V,
pseudocode multiplicities increase quickly with the number of
iterations, and do not progress equally with each iteration step.

III. SIMULATION RESULTS
A simulator for the SP algorithm was built in C++, and bit

error rate (BER) performance was obtained using a large
number of matrices for (8,4) and (16,11) extended Hamming
codes.

As mentioned earlier there are three possible iteration-
stopping criteria. It was found that the parity check criterion
reliably performed better that the LLR convergence check or
fixed iteration approaches. The parity check criterion also
resulted in more successful decodes in fewer iterations. Fig. 4
shows BER performance, and Fig. 5 shows typical histograms
for parity check, LLR convergence check, and parity or LLR
convergence check settings. In all cases the decoding
algorithm was stopped after 20 iterations and bit decisions
made, even if the parity or convergence checks were not
satisfied. These decodes were tagged as “unsuccessful
decodes” and errors were tabulated separately.

Fig. 4. Algorithm performance with different stopping criteria: parity check
only, LLR convergence check, parity or LLR convergence check– Hamming
(8,4).

Fig. 5. Algorithm iteration histograms – Hamming (8,4).

Although there exist a large number of possible parity check

matrices for each code, many have equivalent properties and
thus similar performance. It was useful to categorize them
according to column and row weight distributions. The
weight of a column or row is the number of non-zero elements
in that column or row. The weight of column i indicates the
number of parity check equations in which the variable node i
(i.e. bit position i) participates. The weight of row j indicates
the number of variable nodes (bits) that the check node j
checks. Weight vectors vnw and cnw describe the variable
node and check node weight distributions (number of
rows/columns with a given weight) of each parity check
matrix. For the (8,4) code, variable node weights range from
1 to 4, and check node weights are either 4 or 8. For the
(16,11) code, variable node weights range from 1 to 5, and
check node weights are either 8 or 16.

A. (8,4) Hamming Code
There are four different weight distributions of parity check

matrices for this code. All matrix examples for each weight

4

distribution exhibited identical BER performance for the
signal to noise ratios tested (Eb/N0 from 0 to 8 dB). Fig. 6
shows the BER curves for the sample matrices with each of
these weight distributions. At low Eb/N0, all matrices have
similar performance, but the performance curves begin to
separate at higher Eb/N0.

Table I shows the weight distributions of the sample parity
check matrices and their BER performance at Eb/N0 = 8 dB.
Total BER counts all bit errors regardless of them being a
result of successful decodes (those for which the parity check
equations were satisfied) or unsuccessful decodes (those for
which the algorithm hit the iteration limit of 20). Successful
BER excludes the unsuccessful decodes from the count. The
reason for this separation was to see if the unsuccessful
decodes accounted entirely for the shift in performance from
optimal decoding (which it didn’t).

Note the significant degradation in the performance of
matrices 2 and 5 compared to matrices A and 1. Note also
that matrices 2 and 5 each have a column of weight 4.

Fig. 6. BER performance of four different parity check matrices – Hamming
(8,4).

B. (16,11) Hamming Code
The (16,11) systematic matrix and numerous equivalent

matrices were tested for performance. There are a large

number of variations of matrices possible, so only a subset
with representative characteristics are presented here. BER
curves for sample matrices are shown in Fig. 7 and their
weight distributions are shown in Table II. Note that matrix
276, with a lower weight spread, has the best performance,
and is the only matrix without a weight 5 column.

Fig. 7. BER performance of several equivalent parity check matrices –
Hamming (16,11). (Note: the union bound is loose at low Eb/N0.)

IV. RESEARCH ON THE PERFORMANCE OF ITERATIVE
ALGORITHMS ON FACTOR GRAPHS

Performance of the SP algorithm on factor graphs with
short cycles is not yet very well researched. A few
researchers, such as Wiberg [10], Frey, Koetter, and Vardy
[14],[15] and Koetter and Vontobel [16], are beginning to
develop analysis techniques. This work focuses on analysis of
the pseudocode, C , generated by the computation tree – the
cycle-free tree representation of the original code, C .

Wiberg [10] looked at weights of deviations Ee ∈
(analogous to detours on a trellis) in the pseudocode (his
terminology was subgraph code). He obtains a bound on error
probability as a function of these weights:

TABLE I
PARITY MATRIX WEIGHT DISTRIBUTIONS FOR (8,4) HAMMING CODE

Matrix
Example

Variable Node
Weight

Distribution
 vnw

Check Node
Weight

Distribution
 cnw

Total BER Successful
BER

A { 4 0 4 0 } { 4 0 } 8.33x10-6 2.81x10-6
1 { 2 4 2 0 } { 4 0 } 7.78x10-6 2.99x10-6
2 { 3 3 1 1 } { 4 0 } 7.31x10-5 3.87x10-5
5 { 1 3 3 1 } { 3 1 } 5.83x10-5 1.74x10-5

BERs are for Eb/N0 =8 dB
Matrix A is the systematic form
vnw = { vnw1 vnw2 vnw3 vnw4 } means there are vnw1 weight 1 columns,

vnw2 weight 2 columns, vnw3 weight 3 columns, vnw4 weight 4
columns

cnw = { cnw4 cnw8 } means there are cnw4 weight 4 rows, cnw8 weight 8
rows

TABLE II
PARITY MATRIX WEIGHT DISTRIBUTIONS FOR (16,11) HAMMING CODE

Matrix
Example

Variable Node
Weight

Distribution
 vnw

Check Node
Weight

Distribution
 cnw

Total BER Successful
BER

A { 5 0 10 0 1 } { 5 0 } 9.24x10-6 7.15x10-6
275 { 5 0 10 0 1 } { 5 0 } 1.13x10-5 9.04x10-6
276 { 2 6 6 2 0 } { 5 0 } 4.94x10-6 1.31x10-6
336 { 3 6 4 2 1 } { 5 0 } 1.13x10-5 6.73x10-5

BERs are for Eb/N0 =8 dB
Matrix A is the systematic form
vnw = { vnw1 vnw2 vnw3 vnw4 vnw5 } means there are vnw1 weight 1

columns, vnw2 weight 2 columns, vnw3 weight 3 columns, vnw4 weight
4 columns, vnw5 weight 5 columns

cnw = { cnw8 cnw16 } means there are cnw4 weight 8 rows, cnw8 weight 16
rows

5

() ()∑
∈











≤

Ee

eQP
σ
ωerror decoding

where ()eω is the weight of deviation e , and E is the set of
deviations. In order to calculate this it is necessary to obtain
the weight enumeration function for the deviations, which
becomes more difficult with the number of iterations. He
observes that ()eω is small when some nodes occur more
frequently that others, which in turn increases the error
probability bound.

In order to develop some idea of weights in a factor graph,
Koetter and Vontobel [16] analyze the behavior of iterative
algorithms using finite graph covers. A degree m graph
cover contains m replications of the original factor graph with
edges drawn maintaining the node adjacencies of the factor
graph. In this representation they are able to show that there
exist pseudocodewords with pseudoweights less than the
minimum codeword weight of the original code. Since the
error performance of any code is directly related to distances
between codewords, this lower weight, which arises from the
iterative decoding process, causes the pseudocode to perform
slightly poorer than the original code.

Frey, Koetter, and Vardy [15] present a recursion formula
for calculating node multiplicities (the number of times copies
of a variable or check node occurs in the tree code) in the
computation tree. For the ith node, the length n+p multiplicity
column vector m(l) at half-iteration l, is given by:

() () () ()21 −− −−= lll mIDAmm
Where A is the (n+p)x(n+p) node adjacency matrix, D is a

(n+p)x(n+p) diagonal matrix containing the original code
node degrees, I is the (n+p)x(n+p) identity matrix, m(0)
contains a 1 in the ith position and 0s elsewhere, and m(1) =
Am(0)+m(0). An example of this computation is shown in the
next section.

Using multiplicities, these authors describe the appearance
of pseudosignals – pseudowords that correspond to codewords
in C , and spurious pseudocodewords – pseudowords that

satisfy the parity checks in C but do not have a
corresponding codeword. They show that pseudosignals may
have positive or negative correlation with codewords.
Negatively correlated pseudosignals give rise to decoding
errors.

Also described in [15] is skewness – unequal scaling of
signal dimensions. This results in a tilting of the decoding
boundaries in pseudocode space. A simplfied illustration of
this is given in the next section.

V. ANALYSIS OF SIMULATION RESULTS

A. Tree Code Expansion for (3,0) Trivial Code
In [16], Koetter and Vontobel use a trivial zero-rate code as

an illustrative example of their analysis. Since the tree codes
for the (8,4) and (16,11) codes are far too complicated to
draw, it was decided to use their example in order to visualize

the appearance of pseudocodewords. Although the (3,0) is
clearly a useless code (a codeword is made up entirely of
parity bits and no information bits), it is useful to illustrate the
appearance of pseudocodewords because there exists only one
valid codeword, [0 0 0].

Fig. 8 shows two equivalent matrices for this code, and Fig.
9 shows their tree codes after one full iteration.

A

















011
111
110

B

















100
111
110

Fig. 8. Two equivalent (3,0) parity matrices and their factor graphs.

Fig. 9a). Tree code for the (3,0) matrix A.

Fig. 9b). Tree code for the (3,0) matrix B.

Observe that the first matrix has many short cycles, while

6

the second has lost some cycles. Thus the node multiplicities
and growth of the pseudocode are lower in the second matrix.

Each matrix has a number of tree pseudocodewords that
satisfy local parity checks, so with the addition of noise via
the transmission channel, LLR messages from multiple checks
may converge to an erroneous value. Each variable node
collapses the multiple LLRs by summation, and then a
decision is made on the variable’s bit value. For example, for
node 2 of the first matrix, the LLR value for the decision will
be

2322212 →→→ ++= βββλ

A bit error is made if the individual LLR messages 2→jβ ,

which may be converging independently in response to local
checks, cause the total LLR 2λ , to sum to the wrong value.

B. Analysis of (8,4) Pseudocode
The ideas of node multiplicity and skewness from [15] were

used to analyze the (8,4) code and explain the performance
characteristics of the four representative matrices.

The recursive equations given above were used in this
analysis. Using matrix A as an example, with variable node 1
as the root node, we have m(0) = [1 0 0 0 0 0 0 0 0 0 0 0 0]T,
D = diag(3 3 3 3 1 1 1 1 4 4 4 4), and A is:













































=

000111000100
001011001000
001101010000
001110100000
010000000000
100000000000
000000000001
000000000010
110000000001
110000000010
010000000011
100000000011

A

Table III shows the total variable node multiplicity numbers

(the variable node portion of multiplicity vector m(l)) for the
four tested matrices. Two things are notable from this table.
First, replication of original codeword bits does not progress
evenly in the pseudocode, and this progression differs for each
matrix. Thus it is expected that different matrices process
beliefs concerning each bit (as LLRs) differently. For
accurate decoding, there should remain positive correlation
between pseudocodewords and the original codewords.
Second, the number of bits in the pseudocode increase
exponentially, meaning that the number of pseudocodewords
increase more than exponentially.

Fig. 10 was created using the multiplicity vectors, summing
up the appropriate elements to obtain npseudo, ppseudo and then
kpseudo = npseudo - ppseudo. It shows how fast the pseudocode
grows with each iteration step. The number of
pseudocodewords is 2kpseudo.

Fig. 10. Expansion of pseudocode size with number of full iterations for the
tested matrices – Hamming (8,4).

Fig. 11 was calculated as illustrated by the following

example. For matrix A, using node 1 as the root, the variable
node portion of multiplicity vector m(4) (after 2 iterations) is [
7 4 4 6 3 6 4 6]. Thus codeword 1C = [1 1 1 1 1 1 1 1]

becomes pseudosignal 1C = [7 4 4 6 3 6 4 6]. The angle
between these vectors is

TABLE III
VARIABLE NODE MULTIPLICITIES FOR (8,4) HAMMING CODE

V1 V2 V3 V4 V5 V6 V7 V8

Matrix A
10 10 10 10 4 4 4 4
46 46 46 46 22 22 22 22
190 190 190 190 94 94 94 94
766 766 766 766 382 382 382 382
Matrix 1
10 7 7 7 4 10 4 7
40 31 31 31 16 40 16 40
142 115 115 115 70 142 70 115
520 403 403 403 232 520 232 403
Matrix 2
7 7 7 4 13 4 4 10
37 37 37 22 49 22 22 46
145 145 145 88 211 88 88 172
571 571 571 352 787 352 352 712
Matrix 5
14 14 8 17 14 11 11 11
104 104 44 125 104 77 77 77
752 752 404 863 752 605 605 605
5282 5282 2510 6335 5282 4043 4043 4043

Each row in the table corresponds to an iteration step: row 1 is after the first

iteration, row 2 after the second iteration, etc. Four iterations are shown for
each matrix.

7













= −

11

111cos
CC

CC
φ

Fig. 11. Angle in 8 dimensional space between codeword [1 1 1 1 1 1 1 1]
and its corresponding pseudocodeword – Hamming (8,4).

From these two figures, one can make some conjecture to

explain the performance of the different matrices. Recall that
matrices A (systematic) and 1 had similar performance, and
matrices 2 and 5 were similarly poorer than A and 1. From
Fig. 10 we see that matrices A, 1, and 2 have similar
pseudocode growth, all slower than matrix 5. From Fig. 11 it
is apparent that matrix 2 has the worst skew after only one
iteration, while matrices A and 1 have identical skew. The
poor performance of matrix 2 can be explained by the slippage
of pseudocodewords to the wrong side of the decision
boundaries by this great skew, causing negative correlation
between pseudocodewords and codewords. Although matrix
5 has lower skew angle, its massive growth in number of
pseudocodewords may mean that even small skew can cause
more pseudocodewords to correlate to the wrong codewords.

VI. CONCLUSION
The primary conclusion from this project is that the choice

of parity matrix does have an effect on the performance of the
SP iterative decoding algorithm. The existence of short cycles
in the factor graph degrades performance. In general, it
appears that the existence of weight 1 columns, which
effectively terminates cycles, is beneficial. Also, a low spread
of column weights, resulting in an even progression of node
multiplicity, improves performance. More research is still
required to fully quantify the analysis of short cycles on factor
graphs and determine more solid criteria for factor graph
selection for best performance. There is a research
opportunity to quantify the pseudoweight distributions of
different parity matrices in order to find a bound on error
performance.

REFERENCES
[1] C.E. Shannon, “A mathematical theory of communication,” Bell Sys.

Tech. J., vol. 27, 1948, pp. 379-623.
[2] R.G. Gallager, “Low-density parity-check codes,” IRE Trans. Info.

Theory, vol. IT-8, January 1962, pp. 21-28.
[3] R.G. Gallager, Low-Density Parity-Check Codes, MIT Press,

Cambridge, MA. 1963.
[4] D.J.C. MacKay, R.M. Neal, “Near Shannon limit performance of low

density parity check codes ,” Elect. Letters, vol. 33, No. 6, 13th March
1997, pp. 457,458.

[5] R.M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Info. Theory, vol. IT-27, No. 5, September 1981, pp. 533-547.

[6] S. Chung, et al. “On the design of low-density parity-check codes within
0.0045 dB of the Shannon limit,” IEEE Commun. Lett., vol. 5, February
2001, pp. 58-60.

[7] C. B. Schlegel, L.C. Pérez, Trellis and Turbo Coding, IEEE Press, 2003,
ch. 8 & 9.

[8] D.J.C. MacKay, Information Theory, Inference, and Learning
Algorithms, Cambridge University Press, 2003.

[9] F.R. Kschischang, B.J. Frey, H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Info. Theory, vol. 47, No. 2,
February 2001, pp. 498-519.

[10] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation
440, Dept. Elect. Eng., Linköping Univ., Linköping, Sweden, 1996.

[11] D.J.C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Info. Theory, vol. 45, No. 2, March 1999, pp.
399-431.

[12] B.J. Frey, D.J.C. MacKay, “A revolution: belief propagation in graphs
with cycles,” Advances in Neural Information Processing Systems 10,
MIT Press, Cambridge MA, presented at Neural Inf. Processing Systems
Conf., Denver, CO, December 1997.

[13] J.B. Anderson, S.M. Hladik, “An optimal circular Viterbi decoder for the
bounded distance criterion,” IEEE Trans. Comm., vol. 50, No. 11,
November 2002, pp. 1736-1742.

[14] B.J. Frey, R. Koetter, A. Vardy, “Skewness and pseudocodewords in
iterative decoding,” in Proc. IEEE Int. Symp. Information Theory,
Cambridge, MA, August 1998, pg. 148.

[15] B.J. Frey, R. Koetter, A. Vardy, “Signal space characterization of
iterative decoding,” IEEE Trans. Info. Theory, vol. 47, No. 2, February
2001, pp. 766-781.

[16] R. Koetter, P.O. Vontobel, “Graph-covers and iterative decoding on
finite length codes,” Proc. of Turbo Conference, Brest, 2003.

[17] B. Vucetic, J. Yuan, Turbo Codes – Principles and Applications, Kluwer
Academic Publishers, 2000.

